Much like what is happening in the “big data” space, challenges with interoperability in the IT deployment tool market are converging to create an opportunity for standardization. Before I go any further, let me introduce two terms that have no official meaning in the industry but will make this article easier for you to read:

Deployment Providers – These are command-line utilities, scripts, or other self-contained processes that can be “kicked off” to deploy some single aspect of an overall solution. An example might be a code compiler, a command-line utility that executes database scripts, or a script that provisions a new node in VMWare or up on Amazon Web Services.

Deployment Orchestrators – These are higher level tools that oversee the coordinated execution of the providers. They often include the ability to add custom logic to the overall flow of a deployment and combine multiple providers’ activities together to provide an aggregate view of the state of a complex solution’s deployment. Some open source examples of these are Puppet, Chef and Powerdelivery; and there are many commercial solutions as well.

With those two definitions out of the way, let me begin by describing the problem.

Do we really need deployment standards?

First, as more companies are finding that they are unable to retain market leadership without increasing release frequency and stability, having deployment technologies that differ wildly in operation as personnel move between teams (or jobs) creates a significant loss in productivity. Much like ruby on rails disrupted the web application development market by demonstrating that providing a consistent directory structure and set of naming conventions leads to less variability in software architecture and reduced staff on-boarding costs, so too is the IT deployment space in need of solutions for reducing complexity in the face of economic pressure. As developers and operations personnel collaborate to better deliver value to their customers, having a consistent minimum level of functionality necessary for Deployment Orchestrators to deliver the technology stack they’ve chosen provides the opportunity to reduce IT delivery costs that impact both of these job roles.

Secondly, as the number of technologies that need to be deployed increase exponentially, more organizations are struggling with having a means to get the same quality of deployment capabilities from each of them. While Deployment Orchestrators often include off-the-shelf modules or plugins for deploying various assets, the external teams (often open source contributors or commercial vendors) that create the Deployment Providers rarely have the financial incentive to ensure their continued compatibility with them as they change. This places the burden of compatibility on the Deployment Orchestrator vendor. These vendors must then constantly revise their modules or plugins to support changes originating from the downstream teams that deliver the Deployment Providers, and this coordination will grow increasingly difficult as the technologies that they deploy are also released more frequently through industry adoption of Continuous Delivery.

Standards create their own problems

Whenever one speaks of standardization, there are a number of legitimate concerns. If history repeats itself (and it often does), the leading Deployment Orchestration vendors will lobby hard to have any emerging standards align best with their product’s capabilities – and not necessarily with what is right for the industry. Additionally, as standards are adopted, they must often be broken for innovation to occur. Lastly a committed team of individuals with neutral loyalties to any vendor and a similar financial incentive must be in place to ensure the standard is revised quickly enough to keep pace with the changes needed by the industry.

Scope of beneficial IT deployment standardization

What aspects of IT deployment might benefit from a standard? Below is a list of some that I already see an urgent need for in many client deployments.

Standard format for summary-level status and diagnostics reporting

When deployment occurs, some Deployment Providers have better output than others, and having a standard format in which these tools can emit at least summary-level status or diagnostics that can be picked up by Deployment Orchestrators would be advantageous. Today most Deployment Providers’ deployment activities involve scripting and executing command-line utilities that perform the deployment. These utilities often generate log files, but Deployment Orchestrators must understand the unique format of the log file for every Deployment Provider that was executed to provide an aggregate view of the deployment.

If Deployment Providers could generate standard status files (in addition to their own custom detailed logging elsewhere) that contain at least the computing nodes upon which they took action, a summary of the activities that occurred there, and links to more detailed logs this would enable Deployment Orchestrators to render the files in the format of their choice and enable deep linking between summary level and detailed diagnostics across Deployment Providers.

More Deployment Orchestrators are beginning to provide this capability, but they must invest significantly to adapt the many varying formats of logs into something readable where insight can occur without having to see every detail. A standard with low friction required to adhere would encourage emerging technologies to support this as they first arrive in the market, lowering the burden of surfacing information on Deployment Orchestration vendors so they can invest in delivering features more innovative than simply integration.

Standard API for deployment activity status

When Deployment Providers are invoked to do their work, they often return status codes that indicate to the Deployment Orchestrator whether the operation was successful. Deployment Providers don’t always use the same codes to mean the same thing, and some will return a code known to indicate success but the only way that a problem is determined is by parsing a log file. Having a consistent set of status codes and being able to certify a Deployment Provider’s compatibility would improve the experience for operations personnel and reduce the complexity of troubleshooting failures.

Standard API for rolling back a deployment

Deployment in an enterprise or large cloud-hosted product often involves repeating activities across many computing nodes (physical or virtual). If a failure occurs on one node, in some situations it may be fine to simply indicate that this node should be marked inactive until the problem is resolved, while in other situations the deployment activities already performed on prior nodes should be rolled back.

Since rollbacks of deployments are typically executed in reverse-order and need to provide each Deployment Provider with state information needed to know what is being rolled back, today’s Deployment Orchestration vendors don’t make it easy to do this and significant investment in scripting is necessary to make it happen. A standard API that Deployment Providers could support to allow them to receive notification and state when a rollback has occurred, and then take the appropriate action would allow for a consistent behavior across more industry solutions and teams.

Standard API for cataloging, storing, and retrieving assets

When a failed rollback occurs, Deployment Orchestrators must have access to assets like compiled libraries, deployment packages, and scripts that were generated during a prior deployment to properly revert a node to its previous state. Additionally, it is often desirable to scale out an existing deployment onto additional nodes after the initial deployment already completed to meet additional capacity demands.

Depending on the number and size of the assets to store, number of revisions to retain, and the performance needs of the solution; anything from a simple network share to dedicated cloud storage might fit the bill. A standard API abstracting the underlying storage that Deployment Providers can use to store their assets and Deployment Orchestrators can use to retrieve the correct versions would enable organizations to select storage that meets their operational and financial constraints without being locked in to a single vendor’s solution.

Standard API for accessing a credential repository

In addition to Deployment Providers needing to publish assets as a result of deployment activities, they also often need to access security credentials that have been given permission to modify the infrastructure and components that are configured and deployed to when they execute. On Linux and OSX this is often provided by SSH keys, while on Windows a combination of Kerberos and (in double-hop scenarios through Windows PowerShell) CredSSP. Rather than each deployment needing to implement a custom method for locating keys on the correct servers, a credential repository where these keys can be stored and then securely accessed by trusted nodes would simplify the management of security configuration needed for Deployment Providers to do their work with the right auditability.


With these standards in place, Deployment Orchestration vendors still have plenty of room to innovate in their visualization of the state of nodes in a delivery pipeline, rendering of status in their own style and format for the devices they wish their users to support, and the coordination of these APIs to provide performant solutions across the Deployment Providers that would adopt such a standard. As a team bringing a new Deployment Provider to market, it would improve the adoption of the technology by having the option of adhering to a standard that would ensure it can be orchestrated consistently with the rest of the solution for which their technology is but one part. When standard APIs such as these are made available by a single Deployment Orchestration vendor without first having been established as at least a proposed standard, it is very difficult to motivate the broader community that creates Deployment Providers to do any work to support proprietary APIs themselves.

What do you think? Has the industry tried various aspects of this before outside of a single vendor? Has the market matured since then where the general audience might now see the value in this capability? Would it be too difficult to provide an API in enough languages and formats that orchestration could occur regardless of the platform? Let me know your comments below!

Photo: “lost legos 1/3” © sharyn morrow creative commons 2.0

cloud, configuration, continuous delivery, deployment, environment, productivity, products, testing
, , , ,

Join the conversation! 2 Comments

  1. The shooting might be exactly the same, however the narrative and theatre aren’t.
    Gayle makes the global entire world to fulfil
    the final wishes of his mother, but discovers there’s a lot more
    to Kryat, and to their own involvement in Kryat, than he
    knew ever,” he said.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: